1
A

@
j CHAPTER 13 @22 iy
GRAPH ALGORITHMS

([ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
}) DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND
O j) MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

;}%\
]
T P DIR
ECTED
GRAPHS
4
%

1\) DIGRAPHS

O

®* A digraph is a graph whose edges
are all directed

® Short for “directed graph”

l ® Applications

® one-way streets

T O * flights

® task scheduling

1§ DIGRAPH PROPERTIES

/
O
* A graph G = (V, E) such that
®* Each edge goes in one direction:
* Edge (a, b) goes from a to b, but not b to a
l *If G issimple, m < n(n—1)

* If we keep in-edges and out-edges in separate adjacency lists, we can
Cf O perform listing of incoming edges and outgoing edges in time proportional to

their size

1§ DIGRAPH APPLICATION

O

® Scheduling: edge (a, b) means task a must be completed before b can be

=TT
@

started

1\0 DIRECTED DFS

®* We can specialize the traversal algorithms (DFS
and BFS) to digraphs by traversing edges only
along their direction

® In the directed DFS algorithm, we have four types

of edges
® discovery edges

® cross edges

P ® A directed DFS starting at a vertex S determines

the vertices reachable from s

\1}\)
1\) REACHABILITY

O

®* DFS tree rooted at v: vertices reachable from v via directed paths

1§ STRONG CONNECTIVITY
O

® Each vertex can reach all other vertices

v

Pick a vertex v in G

Perform a DFS from v in G

* If there’s a W not visited, print “no”

Let G’ be G with edges reversed

O_/

Perform a DFS from v in G’

® |If there’s a W not visited, print “no”

T f) ® Else, print “yes”
O

Running time: O(n + m)

1\.\5 STRONGLY CONNECTED COMPONENTS W

O
®* Maximal subgraphs such that each vertex can reach all other vertices in the
subgraph
l ® Can also be done in O(n + m) time using DFS, but is more complicated

(similar to biconnectivity). (K
d
T @—® {a.c.o)
O

O
M {f,d,e,b}

TRANSITIVE CLOSURE

* Given a digraph G, the transitive
closure of G is the digraph G™ such
that

® G* has the same vertices as G

® if G has a directed path from u
tov(u v),G" has a directed
edge from u to v

® The transitive closure provides
reachability information about a
digraph

=

@~ &
© ©0—C

G*

N
\

O

]
[r

COMPUTING THE
TRANSITIVE CLOSURE

If there's a way to get

from A to B and from
to C, then there's a

way to get from A to C.

O

®* We can perform DFS starting

at each vertex

*O(n(n+m))

Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

1\\5 FLOYD-WARSHALL TRANSITIVE CLOSURE

O
®* |dea #1: Number the vertices 1, 2, ..., n.
* |dea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as
intermediate vertices:
l Uses only vertices numbered i, ..., k

(add this edge if it's not already in)

Uses only vertices

numbered i, ...,k — 1 Uses only vertices

numbered k, ..., j

FLOYD-WARSHALL'S ALGORITHM -

* Number vertices vy, ..., Uy Algorithm FloydWarshall(G)
Input: Digraph G
Output: Transitive Closure G* of G

Go= G 1. Name each vertex v € G.vertices() withi =1..n
®* Gg has directed edge (vi,vj) if G has a directed path 2 Go < G

* Compute digraphs Gy, ..., G,

from v; to v 3. fork«1..ndo
* We have that G, = G” 4, G < Gp_4
5. fori<1..n|i+#kdo
* In phase k, digraph G is computed from Gj_4 6. forj < 1..n|j # i,k do
* Running time: 0(n®), assuming /. if G_,.areAdjacent(v;, vy) A
G.areAdjacent(v;, vj) is 0(1) (e.g., adjacency Gy_1-areAdjacent(vy, Uj) A
matrix) =Gy, areAdjacent(vi, vj) then
8. G- insertDirectedEdge(v;, Vj)
9. return G,

/
(

O

0

1\\5 DAGS AND TOPOLOGICAL ORDERING
O—E

A directed acyclic graph (DAG) is a digraph

that has no directed cycles

A topological ordering of a digraph is a

numbering

o vl, ---,vn

® Of the vertices such that for every edge (vi, vj),

we have [< j

Example: in a task scheduling digraph, a
topological ordering a task sequence that

satisfies the precedence constraints

Theorem - A digraph admits a topological

ordering if and only if it is a DAG

Topological
ordering of G

Q EXERCISE
1 TOPOLOGICAL SORTING

O

A typical student day

o

* Number vertices, so that (u, v)

in £ impliesu < v

1,

Q EXERCISE
1 TOPOLOGICAL SORTING

O

* Number vertices, so that (u, v)

in £ impliesu < v

1\\; ALGORITHM FOR TOPOLOGICAL SORTING f

O

* Note: This algorithm is different than Algorithm TopologicalSort(G)

1. H<G

2. n « G.numVertices()

. while =H.empty() do

Let ¥ be a vertex with no outgoing edges
Label v « n

nen—1

H.eraseVertex(v)

the one in the book

)
[s

NO U AW

IMPLEMENTATION WITH DFS

® Simulate the algorithm by using depth-first search

* O(n+ m) time.

Algorithm topological DFS(G)

Input: DAG G

Output: Topological ordering of g

1. n < G.numVertices()

2. Initialize all vertices as UNEXPLORED
3. for each vertex v € G.vertices() do

4 if v. getLabel() = UNEXPLORED then
5 topological DFS(G, v)

Algorithm topologicalDFS(G, v)

Input: DAG G, start vertex v
Output: Labeling of the vertices of G
in the connected component of v
v.setLabel(VISITED)
for each e € v.outEdges() do
w « e.dest()
if w. getLabel() = UNEXPLORED then

topological DFS(G, w)
else

Label v with topological number n
Onen-—1

20 00 NFO O

1§ TOPOLOGICAL SORTING EXAMPLE
O

!

",

1§ TOPOLOGICAL SORTING EXAMPLE
O

;

1\% TOPOLOGICAL SORTING EXAMPLE
O

s

1§ TOPOLOGICAL SORTING EXAMPLE
O

s

1§ TOPOLOGICAL SORTING EXAMPLE
O

s

1§ TOPOLOGICAL SORTING EXAMPLE
O

s

1§ TOPOLOGICAL SORTING EXAMPLE
O

s

1§ TOPOLOGICAL SORTING EXAMPLE
O

s

1§ TOPOLOGICAL SORTING EXAMPLE
O

s

1§ TOPOLOGICAL SORTING EXAMPLE
O

s

