
CHAPTER 13
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND

MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

ORD

DFW

SFO

LAX

DIRECTED GRAPHS

JFK

BOS

MIA

ORD

LAX
DFW

SFO

DIGRAPHS

• A digraph is a graph whose edges

are all directed

• Short for “directed graph”

• Applications

• one-way streets

• flights

• task scheduling A

C

E

B

D

DIGRAPH PROPERTIES

• A graph 𝐺 = (𝑉, 𝐸) such that

• Each edge goes in one direction:

• Edge (𝑎, 𝑏) goes from 𝑎 to 𝑏, but not 𝑏 to 𝑎

• If 𝐺 is simple, 𝑚 < 𝑛(𝑛 − 1)

• If we keep in-edges and out-edges in separate adjacency lists, we can

perform listing of incoming edges and outgoing edges in time proportional to

their size

A

C

E

B

D

DIGRAPH APPLICATION

• Scheduling: edge (𝑎, 𝑏) means task 𝑎 must be completed before 𝑏 can be

started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171

DIRECTED DFS

• We can specialize the traversal algorithms (DFS

and BFS) to digraphs by traversing edges only

along their direction

• In the directed DFS algorithm, we have four types

of edges

• discovery edges

• back edges

• forward edges

• cross edges

• A directed DFS starting at a vertex 𝑠 determines

the vertices reachable from 𝑠 A

C

E

B

D

REACHABILITY

• DFS tree rooted at 𝑣: vertices reachable from 𝑣 via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

STRONG CONNECTIVITY

• Each vertex can reach all other vertices

a

d

c

b

e

f

g

STRONG CONNECTIVITY ALGORITHM

• Pick a vertex 𝑣 in 𝐺

• Perform a DFS from 𝑣 in 𝐺

• If there’s a 𝑤 not visited, print “no”

• Let 𝐺’ be 𝐺 with edges reversed

• Perform a DFS from 𝑣 in 𝐺’

• If there’s a 𝑤 not visited, print “no”

• Else, print “yes”

• Running time: 𝑂(𝑛 +𝑚)

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

STRONGLY CONNECTED COMPONENTS

• Maximal subgraphs such that each vertex can reach all other vertices in the

subgraph

• Can also be done in 𝑂(𝑛 +𝑚) time using DFS, but is more complicated

(similar to biconnectivity).

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

TRANSITIVE CLOSURE

• Given a digraph 𝐺, the transitive
closure of 𝐺 is the digraph 𝐺∗ such
that

• G* has the same vertices as G

• if 𝐺 has a directed path from 𝑢
to 𝑣 (𝑢 𝑣), 𝐺∗ has a directed
edge from 𝑢 to 𝑣

• The transitive closure provides
reachability information about a
digraph

B

A

D

C

E

G

B

A

D

C

E

G*

COMPUTING THE
TRANSITIVE CLOSURE

•We can perform DFS starting

at each vertex

• 𝑂(𝑛(𝑛 + 𝑚))

If there's a way to get

from A to B and from

B to C, then there's a

way to get from A to C.

Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

FLOYD-WARSHALL TRANSITIVE CLOSURE

• Idea #1: Number the vertices 1, 2, … , 𝑛.

• Idea #2: Consider paths that use only vertices numbered 1, 2,… , 𝑘, as

intermediate vertices:

k

j

i

Uses only vertices
numbered 𝑖, … , 𝑘 − 1

Uses only vertices
numbered 𝑘,… , 𝑗

Uses only vertices numbered 𝑖, … , 𝑘
(add this edge if it’s not already in)

FLOYD-WARSHALL’S ALGORITHM

• Number vertices 𝑣1, … , 𝑣𝑛

• Compute digraphs 𝐺0, … , 𝐺𝑛
• 𝐺0 ← 𝐺

• 𝐺𝑘 has directed edge 𝑣𝑖 , 𝑣𝑗 if 𝐺 has a directed path

from 𝑣𝑖 to 𝑣𝑗

• We have that 𝐺𝑛 = 𝐺∗

• In phase 𝑘, digraph 𝐺𝑘 is computed from 𝐺𝑘−1

• Running time: 𝑂 𝑛3 , assuming

𝐺. areAdjacent 𝑣𝑖 , 𝑣𝑗 is 𝑂 1 (e.g., adjacency

matrix)

Algorithm FloydWarshall(𝐺)
Input: Digraph 𝐺
Output: Transitive Closure 𝐺∗ of 𝐺
1. Name each vertex 𝑣 ∈ 𝐺. vertices() with 𝑖 = 1…𝑛
2. 𝐺0 ← 𝐺
3. for 𝑘 ← 1…𝑛 do

4. 𝐺𝑘 ← 𝐺𝑘−1
5. for 𝑖 ← 1…𝑛 | 𝑖 ≠ 𝑘 do

6. for 𝑗 ← 1…𝑛 | 𝑗 ≠ 𝑖, 𝑘 do

7. if 𝐺𝑘−1. areAdjacent 𝑣𝑖 , 𝑣𝑘 ∧

𝐺𝑘−1. areAdjacent 𝑣𝑘 , 𝑣𝑗 ∧

¬𝐺𝑘 . areAdjacent 𝑣𝑖 , 𝑣𝑗 then

8. 𝐺𝑘 . insertDirectedEdge vi, vj
9. return 𝐺𝑛

FLOYD-WARSHALL EXAMPLE

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

FLOYD-WARSHALL, ITERATION 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

FLOYD-WARSHALL, ITERATION 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

FLOYD-WARSHALL, ITERATION 3

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

FLOYD-WARSHALL, ITERATION 4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

FLOYD-WARSHALL, ITERATION 5

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

BOS

FLOYD-WARSHALL, ITERATION 6

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

BOS

FLOYD-WARSHALL, CONCLUSION

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v4

v5

v6

v7

BOS

DAGS AND TOPOLOGICAL ORDERING

• A directed acyclic graph (DAG) is a digraph

that has no directed cycles

• A topological ordering of a digraph is a

numbering

• 𝑣1, … , 𝑣𝑛

• Of the vertices such that for every edge 𝑣𝑖 , 𝑣𝑗 ,

we have 𝑖 < 𝑗

• Example: in a task scheduling digraph, a

topological ordering a task sequence that

satisfies the precedence constraints

• Theorem - A digraph admits a topological

ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that 𝑢, 𝑣

in 𝐸 implies 𝑢 < 𝑣

write c.s. program

play

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day

bake cookies

EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that 𝑢, 𝑣

in 𝐸 implies 𝑢 < 𝑣

write c.s. program

play

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1

2 3

4 5

6

7

8

9

10

11

bake cookies

ALGORITHM FOR TOPOLOGICAL SORTING

• Note: This algorithm is different than

the one in the book

Algorithm TopologicalSort 𝐺
1. 𝐻 ← 𝐺
2. 𝑛 ← 𝐺. numVertices
3. while ¬𝐻. empty do

4. Let 𝑣 be a vertex with no outgoing edges

5. Label 𝑣 ← 𝑛
6. 𝑛 ← 𝑛 − 1
7. 𝐻. eraseVertex 𝑣

IMPLEMENTATION WITH DFS

• Simulate the algorithm by using depth-first search

• 𝑂(𝑛 + 𝑚) time.

Algorithm topologicalDFS 𝐺
Input: DAG 𝐺
Output: Topological ordering of 𝑔
1. 𝑛 ← 𝐺. numVertices
2. Initialize all vertices as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each vertex 𝑣 ∈ 𝐺. vertices do

4. if 𝑣. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

5. topologicalDFS 𝐺, 𝑣

Algorithm topologicalDFS 𝐺, 𝑣
Input: DAG 𝐺, start vertex 𝑣
Output: Labeling of the vertices of 𝐺

in the connected component of 𝑣
1. 𝑣. setLabel(𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. for each 𝑒 ∈ 𝑣. outEdges do

3. 𝑤 ← 𝑒. dest()
4. if 𝑤. getLabel = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

5. //𝑒 is a discovery edge

6. topologicalDFS 𝐺,𝑤
7. else

8. //𝑒 is a forward, cross, or back edge

9. Label 𝑣 with topological number 𝑛
10. 𝑛 ← 𝑛 − 1

TOPOLOGICAL SORTING EXAMPLE

TOPOLOGICAL SORTING EXAMPLE

9

TOPOLOGICAL SORTING EXAMPLE

8

9

TOPOLOGICAL SORTING EXAMPLE

7

8

9

TOPOLOGICAL SORTING EXAMPLE

7

8

6

9

TOPOLOGICAL SORTING EXAMPLE

7

8

56

9

TOPOLOGICAL SORTING EXAMPLE

7

4

8

56

9

TOPOLOGICAL SORTING EXAMPLE

7

4

8

56

3

9

TOPOLOGICAL SORTING EXAMPLE

2

7

4

8

56

3

9

TOPOLOGICAL SORTING EXAMPLE

2

7

4

8

56

1

3

9

